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What is adaptive design?

 For this paper:

– Sample size adjustment at a single interim 

analysis

– This is a very narrow definition!



Designs with Interim Analysis
Design Analysis 1 

n=

Analysis 2 

n=

Analysis 3 

n=

Fixed (no 

interim)

1051 NA NA

2-stage group-

sequential

440 1225 NA

3-stage group-

sequential

306 679 1347

2-stage 

adaptive (LC)

430 679 to 

1402

NA

2-stage 

adaptive (PH)

700 903 to 

1866

NA



Tradeoffs

 Time and expense for an interim analysis

 Do final analysis at the ‘right sample size’ 

versus at a predictable sample size

 Partial knowledge of results from adjusted 

sample size (small sample size means 

‘looks good!’)

 Statistical efficiency?

– PH (whatever it is) looks bad!



Background

 Adaptive designs allow ‘redesign’ of trial based on interim 
data
– have been criticized for not using sufficient statistics

 Tsiatis and Mehta, Biometrika, 2003 prove group-sequential 
can be used to improve on a given adaptive design
– May require additional interim analyses compared to adaptive 

 Jennison and Turnbull, Statistics in Medicine, 2003
– Suggest that if group sequential design is planned for all 

contingencies, it will have better power and sample size 
characteristics across a broad range of treatment differences than an 
adaptive design

– Use adaptive design basing adjustment on interim estimated 
treatment difference



Background

 Posch, Bauer and Brannath, Statistics in Medicine, 2003
– Start with a given 2-stage group sequential design

– Find optimal adaptive design with 
➢ same timing of interim analysis

➢ same critical value at interim analysis

➢ restricts maximum sample size

➢ sets second stage sample size based on conditional power for a 
minimum treatment effect of interest

➢minimize expected sample size averaged over a fixed set of alternatives

➢ These designs can improve average sample size over given group 
sequential designs

 Design strategy presented here is a generalization
– optimize over a broad class of conditional error functions

➢ replaces need to set maximum sample size

– does not restrict timing or critical value of interim analysis

– minimize expected value of loss function over a prior distribution for 
treatment effect size



Background

 Lokhnygina and Tsiatis, 2004

– Fully optimized 2-stage adaptive designs

➢Not confined to a limited class as here

➢Otherwise, the optimization objective is the same

➢Dynamic programming algorithm for optimization





Underlying treatment effect Underlying treatment effect



Question

 Can we compare ‘best’ adaptive and group 

sequential designs, with each using a fixed 

number of interim analyses?

– Optimal group sequential design problem solved by 

Barber and Jennison, Biometrika, 2002

– Similarly optimized of 2-stage adaptive designs are 

presented here with either:

➢ Interim estimated treatment effect (Proschan & Hunsberger, 

Bcs 1995)

➢Minimal treatment effect of interest (Liu & Chi, Bcs, 2001)



2-stage Adaptive design



2-Stage Adaptive Design

 Hypotheses

– H0: =0

– Ha: >0

 Interim analysis with test statistic Z1

– Pre-specify a1<b1

– If Z1>b1 then stop and reject H0

– If Z1<a1 then stop and ‘accept’ H0

– If a1≤ Z1 ≤ b1, continue to stage 2

➢Estimate required stage 2 sample size

➢Compute critical value for stage 2 data



2-Stage Adaptive Design
 Sample n1 subjects in stage 1

 Compute p-value for stage 1 data

– May stop if positive or futile

 If trial continues, map observed stage 1 p-
value to required stage 2 critical value

 Second stage sample size n2 determined 
at end of stage 1

 Compute observed p-value for stage 2 
data (excluding stage 1 data) and 
compare to stage 2 critical value

– Trial positive if 1st or 2nd stage is positive



 Proschan and Hunsberger, Biometrics,1995

– Estimate      from stage 1 data

– Given this value and a critical value for stage 2, 

compute n2 to achieve desired power

 Liu and Chi, Biometrics, 2001

– Substitute    , a minimum value of interest, for 

– This has the effect of reducing maximum sample 

size

Conditional Power for Computing n2

 Proschan and Hunsberger, Biometrics,1995

– Estimate      from stage 1 data

– Given this value and a critical value for stage 2, 

compute n2 to achieve desired power

 Liu and Chi, Biometrics, 2001

– Substitute    , a minimum value of interest, for 

– This has the effect of reducing maximum sample 

size

̂

̂
0

̂
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Properties of A(t;)

 Values in [0,1/2)

– Require additional evidence in stage 2

 As a function of t, A(t,) is
– Defined on (-1,1)

– Non-decreasing

 ‘Nuisance’ parameter 

–A(t,) increasing in 

– Used to obtain the desired overall Type I error 
given the stage 1 critical values 1 and 1

*



Type I Error
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Generalizing A(t;)

 Want to choose from a broad class of A()
functions to get a ‘good’ one

 Add 2 more parameters (, ) to allow 

flexibility in the shape and range of values

 Optimize over 1, 1
*,  and 

 Still use  to get desired overall Type I 

error given values of 1, 1
*,  and 



Power Function Family
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What to optimize?



Optimization Problem Set-up

 Assume a prior distribution for 

 Choose a ‘loss’ function (e.g., expected sample 
size)

 Fixed parameters:
–  : Type I error

– 1- : Power at minimum parameter value of interest 0

 Variable
– n1, sample size at stage 1 

– 1, stage 1 Type I error

– 1
*, probability of futility at stage 1 for =0

– ,  : determine shape of A()



Minimize wrt n1, 1, 1
*, , 
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• L() is the loss function

• n2(t;) is the sample size for stage 2 given a z-value of t

was observed at stage 1 (formula not shown, but it is simple 

and is made of ‘standard’ components)

• t is the z-value at stage 1

• F() is a normal distribution with variance 1

• () is the prior distribution for 



Optimization
(in a nutshell)

 All functions are continuous in the given 
parameters

 Transform problem to an unconstrained 
optimization

 Use numerical integration to compute 
function

 Use off-the-shelf optimization for function 
without known derivatives (Powell’s 
method)



Example

 Binary outcome

– Control event rate estimate: pC=20%

– Reduction by > 25% (say, pA=14.67%) 
considered clinically meaningful
➢ =arcsin(.201/2)-arcsin(.1467)1/2)=0.10

– Reduction by 30% considered likely
➢ =arcsin(.201/2)-arcsin(.13671/2)=0.12

– Moderately weak prior distribution:
➢  ~ Normal(=0.12,=.07)

➢Implies ~5% chance of no effect or worse



Prior density for 

(assume pC=0.2)
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Example (cont.)

 Suppose n1 observations (n1/2 per arm) 

collected in stage 1

 At that time

is distributed approximately Normal(n1

1/2
,1)

 1 C A
ˆ ˆ ˆarcsin( p )-arcsin( p )   n 



Designs compared
 All have

– 90% power when =0.1

– Type I error (one-sided) = 0.025

 Designs

– Optimal adaptive (among Liu & Chi designs)

– Optimal group sequential

➢2-stage

➢3-stage

– Optimal adaptive (among Proschan-

Hunsberger designs)



Final Sample Size Based on 

Interim Analysis: Optimal Designs
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Power of Optimal Tests
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E{N} for Optimal Designs
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Sample Size for Optimal Designs
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Summary

 Adapting using a fixed, minimum treatment 

effect of interest (Liu-Chi method) appears 

to be better than adapting to the estimated 

effect at the time of interim analysis 

(Proschan-Hunsberger method)



Summary

Assuming a single interim analysis we have shown 

an example where best adaptive and group 

sequential designs have essentially identical:

– Power over a range of parameter values

– Expected sample size when averaged over possible 

parameter values using a prior distribution



Issues…

 Can we improve optimized adaptive 

designs by not insisting on constant 

conditional power?

– Set maximum sample size (Posch, et al, 2001)

– Lokhnygina & Tsiatis (2004)

 Other methods of comparing adaptive and 

group sequential designs

– Qing Liu: ‘effectiveness’
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Backup slides

 Conditional error function families



Generalized Proportional Error 

Function Family

  11( ; , , ) 1 ( )A t z t


     
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•A() increasing in t

•A(z1-1
;,,)=

•  and  together determine shape


