Optimal Adaptive vs. Optimal Group Sequential Designs

Keaven Anderson¹ and Qing Liu² ¹Merck Research Laboratories ²Johnson & Johnson Pharmaceutical Research and Development

> BASS XI November 2, 2004

Outline

Introductory example Adaptive design Background - Conditional error functions Optimization Optimal group sequential design Examples comparing optimized adaptive and optimized group sequential designs Summary and unresolved issues

What is adaptive design?

For this paper:

- Sample size adjustment at a single interim analysis
- This is a very narrow definition!

Designs with Interim Analysis

Design	Analysis 1	Analysis 2	Analysis 3
	n=	n=	n=
Fixed (no interim)	1051	NA	NA
2-stage group- sequential	440	1225	NA
3-stage group- sequential	306	679	1347
2-stage adaptive (LC)	430	679 to 1402	NA
2-stage adaptive (PH)	700	903 to 1866	NA

Tradeoffs

- Time and expense for an interim analysis
- Do final analysis at the 'right sample size' versus at a predictable sample size
- Partial knowledge of results from adjusted sample size (small sample size means 'looks good!')
- Statistical efficiency?
 - PH (whatever it is) looks bad!

Background

Adaptive designs allow 'redesign' of trial based on interim data

- have been criticized for not using sufficient statistics
- Tsiatis and Mehta, Biometrika, 2003 prove group-sequential can be used to improve on a given adaptive design
 - May require additional interim analyses compared to adaptive
- Jennison and Turnbull, Statistics in Medicine, 2003
 - Suggest that if group sequential design is planned for all contingencies, it will have better power and sample size characteristics across a broad range of treatment differences than an adaptive design
 - Use adaptive design basing adjustment on interim estimated treatment difference

Posch, Bauer and Brannath, Statistics in Medicine, 2003

- Start with a given 2-stage group sequential design
- Find optimal adaptive design with
 - same timing of interim analysis
 - same critical value at interim analysis
 - restricts maximum sample size
 - sets second stage sample size based on conditional power for a minimum treatment effect of interest
 - minimize expected sample size averaged over a fixed set of alternatives
 - These designs can improve average sample size over given group sequential designs

Design strategy presented here is a generalization

- optimize over a broad class of conditional error functions
 - replaces need to set maximum sample size
- does not restrict timing or critical value of interim analysis
- minimize expected value of loss function over a prior distribution for treatment effect size

Background

Lokhnygina and Tsiatis, 2004

 Fully optimized 2-stage adaptive designs
 Not confined to a limited class as here
 Otherwise, the optimization objective is the same
 Dynamic programming algorithm for optimization

STATISTICS IN MEDICINE Statist. Med. 2003; 22:971–993 (DOI: 10.1002/sim.1457)

Mid-course sample size modification in clinical trials based on the observed treatment effect

Christopher Jennison^{1,*,†} and Bruce W. Turnbull²

¹Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, U.K. ²Department of Statistical Science, 227 Rhodes Hall, Cornell University, Ithaca, New York 14853-3801, U.S.A.

MID-COURSE SAMPLE SIZE MODIFICATION IN CLINICAL TRIALS

Figure 7. Power and ASN curves of the variance spending (VS) test and two-stage group sequential test. ASN scale is in multiples of the original fixed sample size, n.

Question

- Can we compare 'best' adaptive and group sequential designs, with each using a fixed number of interim analyses?
 - Optimal group sequential design problem solved by Barber and Jennison, Biometrika, 2002
 - Similarly optimized of 2-stage adaptive designs are presented here with either:
 - Interim estimated treatment effect (Proschan & Hunsberger, Bcs 1995)
 - Minimal treatment effect of interest (Liu & Chi, Bcs, 2001)

2-stage Adaptive design

2-Stage Adaptive Design

Hypotheses

- H₀: θ=0
- H_a: θ>0

Interim analysis with test statistic Z₁

- Pre-specify a₁<b₁
- If $Z_1 > b_1$ then stop and reject H_0
- If $Z_1 < a_1$ then stop and 'accept' H_0
- If $a_1 \le Z_1 \le b_1$, continue to stage 2
 - Estimate required stage 2 sample size
 - Compute critical value for stage 2 data

2-Stage Adaptive Design Sample n₁ subjects in stage 1 Compute p-value for stage 1 data - May stop if positive or futile If trial continues, map observed stage 1 pvalue to required stage 2 critical value Second stage sample size n₂ determined at end of stage 1 Compute observed p-value for stage 2 data (excluding stage 1 data) and compare to stage 2 critical value - Trial positive if 1st or 2nd stage is positive

Conditional Power for Computing n₂

Proschan and Hunsberger, Biometrics, 1995

- Estimate θ from stage 1 data
- Given this value and a critical value for stage 2, compute n₂ to achieve desired power
- Liu and Chi, Biometrics, 2001
 - Substitute θ_0 a minimum value of interest, for $\hat{\theta}$
 - This has the effect of reducing maximum sample size

Conditional Error Function

2-stage adaptive design

Properties of $A(t; \gamma)$ Values in [0,1/2) - Require additional evidence in stage 2 • As a function of t, $A(t,\gamma)$ is - Defined on (-1,1)- Non-decreasing • 'Nuisance' parameter γ $-A(t,\gamma)$ increasing in γ - Used to obtain the desired overall Type I error given the stage 1 critical values α_1 and α_1

Type I Error

$\alpha = \alpha_1 + \alpha_2$

where $z_{1-\alpha_1}$ $\alpha_2 = \int A(t;\gamma)\varphi(t)dt$

 γ is typically used to adjust α_2 appropriately

 $\frac{1-\alpha_1}{1-\alpha_1}$

Generalizing $A(t; \gamma)$

- Want to choose from a broad class of A() functions to get a 'good' one
- Add 2 more parameters (η, ν) to allow flexibility in the shape and range of values
 Optimize over α₁, α₁*, η and ν
- Still use γ to get desired overall Type I error given values of α₁, α₁*, η and ν

Power Function Family

$$A(t;\gamma,\eta,\nu) = \eta + \nu$$

$$\left(\frac{t-z_{1-\alpha_{1}^{*}}}{z_{1-\alpha_{1}}-z_{1-\alpha_{1}^{*}}}\right)'$$

•A() increasing in t • $A(z_{1-\alpha_1}^*;\gamma,\eta,\nu)=\eta$ • $A(z_{1-\alpha_1};\gamma,\eta,\nu)=\eta+\nu$ • γ determines shape

What to optimize?

Optimization Problem Set-up

- Assume a prior distribution for θ
- Choose a 'loss' function (e.g., expected sample size)
- Fixed parameters:
 - $-\alpha$: Type I error
 - 1- β : Power at minimum parameter value of interest θ_0
- Variable
 - n₁, sample size at stage 1
 - α_1 , stage 1 Type I error
 - $-\alpha_1^*$, probability of futility at stage 1 for $\theta=0$
 - $-\eta$, v : determine shape of A()

$\begin{array}{l} \text{Minimize wrt } n_1, \alpha_1, \alpha_1^*, \eta, \nu \\ \int \int \int _{z_{1-\alpha_1}}^{z_{1-\alpha_1}} L(n_1, n_2(t; n_1, \alpha_1, \alpha_1^*, \eta, \nu)) dF(t; \theta, n_1) d\pi(\theta) \\ \end{array}$

• L() is the loss function

• $n_2(t;)$ is the sample size for stage 2 given a z-value of t was observed at stage 1 (formula not shown, but it is simple and is made of 'standard' components)

- t is the z-value at stage 1
- F() is a normal distribution with variance 1
- π () is the prior distribution for θ

Optimization (in a nutshell)

- All functions are continuous in the given parameters
- Transform problem to an unconstrained optimization
- Use numerical integration to compute function
- Use off-the-shelf optimization for function without known derivatives (Powell's method)

Example

Binary outcome

- Control event rate estimate: p_c=20%
- Reduction by > 25% (say, p_A=14.67%)
 considered clinically meaningful
 - $\ge \theta = \arcsin(.20^{1/2}) \arcsin(.1467)^{1/2}) = 0.10$
- Reduction by 30% considered likely
 - $\ge \theta = \arcsin(.20^{1/2}) \arcsin(.1367^{1/2}) = 0.12$
- Moderately weak prior distribution:
 - $\geq \theta \sim \text{Normal}(\mu=0.12,\sigma=.07)$
 - Implies ~5% chance of no effect or worse

Prior density for θ (assume p_c=0.2)

Example (cont.)

Suppose n₁ observations (n₁/2 per arm) collected in stage 1
 At that time

$$\hat{\theta} = \sqrt{n_1} \left\{ \arcsin(\sqrt{\hat{p}_C}) - \arcsin(\sqrt{\hat{p}_A}) \right\}$$

is distributed approximately Normal($\theta n_1^{1/2}, 1$)

Designs compared

All have

- -90% power when $\theta=0.1$
- Type I error (one-sided) = 0.025
- Designs
 - Optimal adaptive (among Liu & Chi designs)
 - Optimal group sequential
 - ≻2-stage
 - ≻3-stage
 - Optimal adaptive (among Proschan-Hunsberger designs)

Final Sample Size Based on Interim Analysis: Optimal Designs

Power of Optimal Tests

E{N} for Optimal Designs

E(N)

Sample Size for Optimal Designs

← Min N ---- E{N} ---- Max N

Summary

Adapting using a fixed, minimum treatment effect of interest (Liu-Chi method) appears to be better than adapting to the estimated effect at the time of interim analysis (Proschan-Hunsberger method)

Summary

Assuming a single interim analysis we have shown an example where best adaptive and group sequential designs have essentially identical:

- Power over a range of parameter values
- Expected sample size when averaged over possible parameter values using a prior distribution

Issues...

- Can we improve optimized adaptive designs by not insisting on constant conditional power?
 - Set maximum sample size (Posch, et al, 2001)
 - Lokhnygina & Tsiatis (2004)
- Other methods of comparing adaptive and group sequential designs
 - Qing Liu: 'effectiveness'

REFERENCES

- 1. Barber S, Jennison C. Optimal asymmetric one-sided group sequential tests. *Biometrika* 2002;**89**:49-60.
- 2. Jennison C,.Turnbull BW. Mid-course sample size modification in clinical trials based on the observed treatment effect. *Stat.Med* 2003;**22**:971-93.
- 3. Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. 2002.
- 4. Liu Q, Chi GY. On sample size and inference for two-stage adaptive designs. *Biometrics* 2001;**57**:172-7.
- 6. Liu, Q., Anderson, K. M., and Pledger, G. W. Benefit-risk evaluation of multi-stage adaptive designs. *Sequential Analysis*, in press, 2004.
- 7. Lokhnygina, Y. and Tsiatis, A. Optimal Two-stage Adaptive Designs. Submitted for publication.
- 8. Posch, M, Bauer, P and Brannath, W. Issues in designing flexible trials. Stat Med 2003;22:953-969.
- 9. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C: The Art of Scientific Computing. 1992.
- 10. Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. *Biometrics* 1995;**51**:1315-24.
- 11. Tsiatis AA,.Mehta C. On the inefficiency of the adaptive design for monitoring clinical trials. *Biometrika* 2003;**90**:367-78.

Conditional error function families

Generalized Proportional Error Function Family

$$A(t;\gamma,\eta,\nu) = \eta \left\{ 1 - \Phi \left(\left[\gamma(z_{1-\alpha_1} - t) \right]^{\nu} \right) \right\}$$

- •A() increasing in t
- • $A(z_{1-\alpha_1};\gamma,\eta,\nu)=\eta$
- γ and ν together determine shape